Light Curves of Type IIP Supernovae from Neutrino-driven Explosions of Red Supergiants Obtained by a Semi-analytic Approach

First author: Shuai Zha Type IIP supernovae (SNe IIP) mark the explosive death of red supergiants (RSGs), evolved massive stars with an extended hydrogen envelope. They are the most common supernova type and allow for benchmarking of supernova explosion models by statistical comparison to observed population properties rather than comparing individual models and events. We construct a large synthetic set of SNe IIP light curves (LCs) using the radiation hydrodynamics code \texttt{SNEC} and explosion energies and nickel masses obtained from an efficient semi-analytic model for two different sets of stellar progenitor models.

Mapping dust attenuation and the 2175 Å bump at kpc scales in nearby galaxies

First author: Shuang Zhou We develop a novel approach to measure dust attenuation properties of galaxies,including the dust opacity and shape of the attenuation curve in both optical and NUV, as well as the strength of the 2175{\AA} absorption feature. From an observed spectrum the method uses a model-independent approach to derive a relative attenuation curve.The absolute amplitude is then calibrated with the NIR photometry. The dust-corrected spectrum is fitted with stellar population models to derive the dust-free model spectrum covering the whole wavelength range from NUV to NIR and is compared with the observed SED/spectrum to determine dust attenuation properties.

Multiwavelength Scrutiny of X-ray Sources in Dwarf Galaxies: ULXs versus AGN

First author: Erica Thygesen Owing to their quiet evolutionary histories, nearby dwarf galaxies (stellar masses $M_\star \lesssim 3 \times 10^9 M_\odot$) have the potential to teach us about the mechanism(s) that ‘seeded’ the growth of supermassive black holes, and also how the first stellar mass black holes formed and interacted with their environments. Here, we present high spatial-resolution observations of three dwarf galaxies in the X-ray (Chandra), the optical/near-infrared (Hubble Space Telescope), and the radio (Karl G.

Multiwavelength studies of G298.6$-$0.0: An old GeV supernova remnant interacting with molecular clouds

First author: Paul K. H. Yeung Hadronic $\gamma$-ray sources associated with supernova remnants (SNRs) can serve as stopwatches for the escape of cosmic rays from SNRs, which gradually develops from highest-energy particles to lowest-energy particles with time. In this work, we analyze the 13.7~yr \emph{Fermi}-LAT data to investigate the $\gamma$-ray feature in/around the SNR G298.6$-$0.0 region. With $\gamma$-ray spatial analyses, we detect three point-like components. Among them, Src-NE is at the eastern SNR shell, and Src-NW is adjacent to the western edge of this SNR.

Non-local contribution from small scales in galaxy-galaxy lensing: Comparison of mitigation schemes

First author: J. Prat Recent cosmological analyses with large-scale structure and weak lensing measurements, usually referred to as 3$\times$2pt, had to discard a lot of signal-to-noise from small scales due to our inability to precisely model non-linearities and baryonic effects. Galaxy-galaxy lensing, or the position-shear correlation between lens and source galaxies, is one of the three two-point correlation functions that are included in such analyses, usually estimated with the mean tangential shear.

Numerical analyses of M31 dark matter profiles

Kuantay Boshkayev We reproduce the rotation curve of the Andromeda galaxy (M31) by taking into account its bulge, disk, and halo components, considering the last one to contain the major part of dark matter mass. Hence, our prescription is to split the galactic bulge into two components, namely, the inner and main bulges, respectively. Both bulges are thus modeled by exponential density profiles since we underline that the widely accepted de Vaucouleurs law fails to reproduce the whole galactic bulge rotation curve.

On the application of dimensionality reduction and clustering algorithms for the classification of kinematic morphologies of galaxies

First author: M. S. Rosito The morphological classification of galaxies is considered a relevant issue and can be approached from different points of view. The increasing growth in the size and accuracy of astronomical data sets brings with it the need for the use of automatic methods to perform these classifications. The aim of this work is to propose and evaluate a method for automatic unsupervised classification of kinematic morphologies of galaxies that yields a meaningful clustering and captures the variations of the fundamental properties of galaxies.

On the bright-end of the UV luminosity functions of galaxies at $z \sim 0.6-1.2$

First author: M. Sharma We derive the Ultra-Violet (UV) luminosity function (LF) of star forming galaxies falling in the redshift range $z = 0.6 - 1.2$, in the rest-frame far-UV (1500 {\AA}) wavelength. For this work we are in particular interested in the bright end of the UV LF in this redshift range. The data from \textit{XMM-Newton} Optical Monitor (XMM-OM), near-ultraviolet (1600-4000 {\AA}) observations over 1.5 deg\textsuperscript{2} of the COSMOS field are employed for this purpose.

On the observability and identification of Population III galaxies with JWST

James A. A. Trussler We utilise theoretical models of Population III stellar+nebular spectra to investigate the prospects of observing and accurately identifying Population III galaxies with JWST using both deep imaging and spectroscopy. We investigate a series of different colour cuts, finding that a combination of NIRCam and MIRI photometry through the F444W-F560W, F560W-F770W colours offers the most robust identifier of potential $z=8$ Pop III candidates. We calculate that NIRCam will have to reach $\sim$ 28.

On-sky performance of new 90 GHz detectors for the Cosmology Large Angular Scale Surveyor (CLASS)

First author: Carolina Núñez The Cosmology Large Angular Scale Surveyor (CLASS) is a polarization-sensitive telescope array located at an altitude of 5,200 m in the Chilean Atacama Desert and designed to measure the polarized Cosmic Microwave Background (CMB) over large angular scales. The CLASS array is currently observing with three telescopes covering four frequency bands: one at 40 GHz (Q); one at 90 GHz (W1); and one dichroic system at 150/220 GHz (HF).