Globular cluster metallicity distributions in the E-MOSAICS simulations

Joel Pfeffer The metallicity distributions of globular cluster (GC) systems in galaxies are a critical test of any GC formation scenario. In this work, we investigate the predicted GC metallicity distributions of galaxies in the MOdelling Star cluster population Assembly In Cosmological Simulations within EAGLE (E-MOSAICS) simulation of a representative cosmological volume (L=34.4 comoving Mpc). We find that the predicted GC metallicity distributions and median metallicities from the fiducial E-MOSAICS GC formation model agree well the observed distributions, except for galaxies with masses M∗∼2×1010 M⊙, which contain an overabundance of metal-rich GCs.

Impact of Population III homogeneous stellar evolution on early cosmic reionisation

Yves Sibony Context: Population III (Pop III) stars may be fast rotating. An expected consequence of fast rotation is strong internal mixing that deeply affects their evolutionary tracks in the Hertzsprung-Russell diagram and hence their ionising power. aims: We investigate the impact on the ionising power of Pop III stars in an extreme case of internal mixing, the one leading to chemically homogeneous evolution (CHE). In that situation, during the main sequence phase, the star keeps the same chemical composition from its center to its surface.

Interacting Kilonovae: Long-lasting Electromagnetic Counterparts to Binary Mergers in the Accretion Disks of Active Galactic Nuclei

Jia Ren We investigate the dynamics and electromagnetic (EM) signatures of neutron star-neutron star (NS-NS) or neutron star-black hole (NS-BH) merger ejecta that occurs in the accretion disk of an active galactic nucleus (AGN). We find that the interaction between ejecta and disk gas leads to important effects on the dynamics and radiation. We show five stages of the ejecta dynamics: gravitational slowing down, coasting, Sedov-Taylor deceleration in the disk, re-acceleration after the breakout from the disk surface, and momentum-conserved snowplow phase.

Interpreting ALMA non-detections of JWST super-early galaxies

First author: M. Kohandel Recent attempts to detect OIII 88$\mu$m emission from super-early ($z>10$) galaxy candidates observed by JWST have been unsuccessful. By using zoom-in simulations, we show that these galaxies are faint, and mostly fall below the local metal-poor $[OIII]-SFR$ relation as a result of their low ionization parameter, $U_{\rm ion}\lesssim 10^{-3}$. Such low $U_{\rm ion}$ values are found in galaxies that are in an early assembly stage, and whose stars are still embedded in high-density natal clouds.

Investigating the Narrow Line Region Dynamics in Nearby Active Galaxies

First author: Beena Meena We present dynamical models of the narrow line region (NLR) outflows in the nearby Seyfert galaxies Mrk 3, Mrk 78, NGC 1068, and NGC 4151 using observations from the Hubble Space Telescope and Apache Point Observatory. We employ long-slit spectroscopy to map the spatially-resolved outflow and rotational velocities of the ionized gas. We also perform surface brightness decompositions of host galaxy images to constrain the enclosed stellar mass distributions as functions of distance from the supermassive black holes (SMBHs).

JWST high redshift galaxy observations have a strong tension with Planck CMB measurements

First author: Deng Wang JWST high redshift galaxy observations predict a higher star formation efficiency than the standard cosmology does, which poses a new tension to $\Lambda$CDM. We find that the situation is worse than expected. The true situation is that the Planck CMB measurement has a strong tension with JWST high redshift galaxy observations. Specifically, we make a trial to alleviate this tension by considering alternative cosmological models including dark matter-baryon interaction, $f(R)$ gravity and dynamical dark energy.

Kinematic signatures of impulsive supernova feedback in dwarf galaxies

Jan D. Burger Impulsive supernova feedback and non-standard dark matter models, such as self-interacting dark matter (SIDM), are the two main contenders for the role of the dominant core formation mechanism at the dwarf galaxy scale. Here we show that the impulsive supernova cycles that follow episodes of bursty star formation leave distinct features in the distribution function of stars: groups of stars with similar ages and metallicities develop overdense shells in phase space.

Kinematic-Chemical analysis and Time tagging for the Diagonal Ridge Structure of the Galactic Outer Disk with LAMOST Red Giant Branch Stars

Peng Yang We investigate the kinematic-chemical distribution of Red Giant Branch (RGB)stars from the LAMOST survey crossed matched with Gaia DR2 proper motions, and present time tagging for the well-known ridge structures (diagonal distributions for $V_R$ in the $R$, $V_φ$ plane) in the range of Galactocentric distance $R$ = 8 to 15 kpc. We detect six ridge structures, including five ridges apparent in the radial velocity distribution and three ridges apparent in the vertical velocity, the sensitive time of which to the perturbations are from young population (0$-$3 Gyr) to old population (9$-$14 Gyr).

Large Deviations in the Early Universe

Timothy Cohen Fluctuations play a critical role in cosmology. They are relevant across a range of phenomena from the dynamics of inflation to the formation of structure. In many cases, these fluctuations are coarse grained and follow a Gaussian distribution as a consequence of the Central Limit Theorem. Yet, some classes of observables are dominated by rare fluctuations and are sensitive to the details of the underlying microphysics. In this paper, we argue that the Large Deviation Principle can be used to diagnose when one must to appeal to the fundamental description.

Large Deviations in the Early Universe

Xin Wang Fluctuations play a critical role in cosmology. They are relevant across a range of phenomena from the dynamics of inflation to the formation of structure. In many cases, these fluctuations are coarse grained and follow a Gaussian distribution as a consequence of the Central Limit Theorem. Yet, some classes of observables are dominated by rare fluctuations and are sensitive to the details of the underlying microphysics. In this paper, we argue that the Large Deviation Principle can be used to diagnose when one must to appeal to the fundamental description.