First author: Richard Qiu
The Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer Collaborations have now detected all three classes of compact binary mergers: binary black hole (BBH), binary neutron star (BNS), and neutron star-black hole (NSBH). For coalescences involving neutron stars, the simultaneous observation of gravitational and electromagnetic radiation produced by an event, has broader potential to enhance our understanding of these events, and also to probe the equation of state (EOS) of dense matter.
First author: Stephanie O’Neil
Self-interacting dark matter (SIDM) offers the potential to mitigate some of the discrepancies between simulated cold dark matter (CDM) and observed galactic properties. We introduce a physically motivated SIDM model to understand the effects of self interactions on the properties of Milky Way and dwarf galaxy sized haloes. This model consists of dark matter with a nearly degenerate excited state, which allows for both elastic and inelastic scattering.
First author: Miguel Araya
The discovery of a non-thermal radio ring of low surface brightness about one degree in diameter has been recently reported around the location in the sky of the Calvera pulsar, at a high Galactic latitude. The radio properties point to it likely being a new supernova remnant (SNR), G118.4+37.0. We report an analysis of almost 14 years of observations of this region by the gamma-ray Large Area Telescope onboard the Fermi satellite.
First author: Jonathan Petersson
Shell galaxies make a class of tidally distorted galaxies, characterised by wide concentric arc(s), extending out to large galactocentric distances with sharp outer edges. Recent observations of young massive star clusters in the prominent outer shell of NGC 474 suggest that such systems host extreme conditions of star formation. In this paper, we present a hydrodynamic simulation of a galaxy merger and its transformation into a shell galaxy.
First author: Mike Y. M. Lau
Transit and radial-velocity surveys over the past two decades have uncovered a significant population of short-period exoplanets. Among them are hot Jupiters, which are gas giant planets with orbital periods of a few days and found in 0.1-1% of Sun-like stars. Hot Jupiters are expected to be engulfed during their host star’s radial expansion on the red giant branch. Planetary engulfment has been studied extensively as it may account for observed rapidly rotating and chemically enriched giant stars.
First author: Ian D. Roberts
With MaNGA integral field spectroscopy, we present a resolved analysis of star formation for 29 jellyfish galaxies in nearby clusters, identified from radio continuum imaging taken by the Low Frequency Array. Simulations predict enhanced star formation on the “leading half” of galaxies undergoing ram pressure stripping, and in this work we report observational evidence for this elevated star formation. The dividing line (through the galaxy center) that maximizes this star formation enhancement is systematically tied to the observed direction of the ram pressure stripped tail, suggesting a physical connection between ram pressure and this star formation enhancement.
First author: Wasundara R. Athukoralalage
NGC 4472 is home to five ultraluminous X-ray sources hosted by globular clusters. These sources have been suggested as good black hole candidates in extragalactic globular clusters$-$ a highly sought after population that may provide observational information regarding the progenitors of merging black hole binaries. In this body of work, we present X-ray and optical follow up to one of these sources, CXOUJ1229410+075744 (GCU1). We find no evidence of [OIII] optical emission in GCU1 which indicates a lack of significant evidence for super-Eddington outflows, unlike what is seen in a handful of ULXs in extragalactic GCs.
First author: Fabrizio Tamburini
In our previous work [Tamburini and Licata (2017)] we discussed the hypothesis that the ultrafast periodic spectral modulations with frequency $f_S \simeq 0.61$ THz found by Borra and Trottier (2016) in $236$ main sequence stars from a sample of $2.5$ million spectra of galactic halo stars of the Sloan Digital Sky Survey were due to axion-like dark matter piled up in the center of these stars.
First author: Pankaj C. Bhambhani
Galaxy populations are known to exhibit a strong colour bimodality, corresponding to blue star-forming and red quiescent subpopulations. The relative abundance of the two populations has been found to vary with stellar mass and environment. In this paper, we explore the effect of environment considering different types of measurements. We choose a sample of 49, 911 galaxie with $0.05 < z < 0.18$ from the Galaxy And Mass Assembly survey.
First author: Chenxiao Zeng
The clustering signals of galaxy clusters are known to be powerful tools for self-calibrating the mass-observable relation and are complementary to cluster abundance and lensing. In this work, we explore the possibility of combining three correlation functions – cluster lensing, the cluster-galaxy cross-correlation function, and the galaxy auto-correlation function – to self-calibrate optical cluster selection bias, the boosted clustering and lensing signals in a richness-selected sample mainly caused by projection effects.