First author: Apurba Bera
The neutral atomic hydrogen (HI) mass function (HIMF) describes the distribution of the HI content of galaxies at any epoch; its evolution provides an important probe of models of galaxy formation and evolution. Here, we report Giant Metrewave Radio Telescope HI 21cm spectroscopy of blue star-forming galaxies at $z\approx0.20-0.42$ in the Extended Groth Strip, which has allowed us to determine the scaling relation between the average HI mass ($\rm{M_{HI}}$) and the absolute B-band magnitude ($\rm{M_B}$) of such galaxies at $z \approx 0.
First author: Diego Sotillo-Ramos
We analyze the merger and assembly histories of Milky Way (MW) and Andromeda (M31)-like galaxies to quantify how, and how often, disk galaxies of this mass can survive recent major mergers (stellar mass ratio $\ge$ 1:4). For this, we use the cosmological magneto-hydrodynamical simulation TNG50 and identify 198 analog galaxies, selected based on their $z=0$ stellar mass ($10^{10.5-11.2} {\rm M_{\odot}}$), disky stellar morphology and local environment.
First author: H. -B. Yuan
With a unique set of 54 overlapping narrow-band and two broader filters covering the entire optical range, the incoming Javalambre-Physics of the Accelerating Universe Astrophysical Survey (J-PAS) will provide a great opportunity for stellar physics and near-field cosmology. In this work, we use the miniJPAS data in 56 J-PAS filters and 4 complementary SDSS-like filters to explore and prove the potential of the J-PAS filter system in characterizing stars and deriving their atmospheric parameters.
First author: Anand Sivaramakrishnan
The James Webb Space Telescope’s Near Infrared Imager and Slitless Spectrograph (JWST-NIRISS) flies a 7-hole non-redundant mask (NRM), the first such interferometer in space, operating at 3-5 \micron~wavelengths, and a bright limit of $\simeq 4$ magnitudes in W2. We describe the NIRISS Aperture Masking Interferometry (AMI) mode to help potential observers understand its underlying principles, present some sample science cases, explain its operational observing strategies, indicate how AMI proposals can be developed with data simulations, and how AMI data can be analyzed.
First author: C. Snapp-Kolas
We present a rest-UV selected sample of 32 lensed galaxies at $z\sim 2$ observed with joint Keck/LRIS rest-UV and Keck/MOSFIRE rest-optical spectra behind the clusters Abell 1689, MACS J0717, and MACS J1149. The sample pushes towards the faintest UV luminosities observed ($-19 \le {\rm M_{\rm UV}} \le -17$) at this redshift. The fraction of dwarf galaxies identified as Ly$\alpha$ emitters ($\rm EW \ge 20\ \overset{\lower.5em\circ}{\mathrm{A}}$) is ${\rm X_{\rm LAE}}=25^{+15}{-10}%$.
First author: Nicolas Peschken
Feeding with gas in streams is predicted to be an important galaxy growth mechanism. Using an idealised setup, we study the impact of stream feeding (with 10$^7$ M${\odot}$ Myr$^{-1}$ rate) on the star formation and outflows of disc galaxies with $\sim$10$^{11}$ M${\odot}$ baryonic mass. The magneto-hydrodynamical simulations are carried out with the PIERNIK code and include star formation, feedback from supernova, and cosmic ray advection and diffusion.
First author: Yuan Lian
We present a new planetary global circulation model, planetMPAS, based on the state-of-the-art NCAR MPAS General Circulation Model. Taking advantage of the cross compatibility between WRF and MPAS, planetMPAS includes most of the planetWRF physics parameterization schemes for terrestrial planets such as Mars and Titan. PlanetMPAS also includes a set of physics that represents radiative transfer, dry convection, moist convection and its associated microphysics for the Jovian atmosphere.
First author: Li-Hsin Chen
We analyse the location of extremely metal-poor stars (EMPs, [Fe/H]$ < -3$) in 198 Milky Way (MW)/M31-like galaxies at $z=0$ in the TNG50 simulation. Each system is divided into four kinematically-defined morphological stellar components based on stellar circularity and galactocentric distance, namely bulge, cold disk, warm disk, and stellar halo, in addition to satellites (with stellar mass $\ge 5\times10^6,M_\odot$). According to TNG50 and across all simulated systems, the stellar halo of the main galaxy and satellites present the highest frequency of EMPs (largest $M_{\mathrm{EMP, comp}}$-to-$M_{\mathrm{tot, comp}}$ stellar mass ratio), and thus the highest chances of finding them.
First author: Juri Smirnov
Recent surveys have discovered a population of faint supernovae, known as Ca-rich gap transients, inferred to originate from explosive ignitions of white dwarfs. In addition to their unique spectra and luminosities, these supernovae have an unusual spatial distribution and are predominantly found at large distances from their presumed host galaxies. We show that the locations of Ca-rich gap transients are well matched to the distribution of dwarf spheroidal galaxies surrounding large galaxies, in accordance with a scenario where dark matter interactions induce thermonuclear explosions among low-mass white dwarfs that may be otherwise difficult to ignite with standard stellar or binary evolution mechanisms.
First author: Christian Eistrup
[Abridged] This review paper discussed which chemical effects may be at play in a planet-forming disk midplane, which effects are relevant under different conditions, and which tools are available for modelling chemical kinetics in a disk midplane. The review goes on to discuss some important efforts in the planet formation modelling community to treat chemical evolution, and, vice versa, efforts in the chemical modelling community to implement more physical effects related to planet formation into the chemical modelling.