First author: A. D. Dolgov
Astronomical observations strongly incompatible with the canonical cosmological model are reviewed. In particular too early formation of galaxies, as discovered by HST and JWST, are discussed in detail. Other data revealing highly dense population of the very young universe with plethora of other different types of objects are presented. It is demonstrated that similar or maybe even more pronounced problems can be seen also in the present day universe.
First author: Joshua L. Steffen
We present a comparative study of active galactic nuclei (AGN) between galaxy pairs and isolated galaxies with the final data release of the MaNGA integral field spectroscopic survey. We build a sample of 391 kinematic galaxy pairs within the footprint of the survey and select AGN using the survey’s spectra. We use the comoving volume densities of the AGN samples to quantify the effects that tidal interactions have on the triggering of nuclear accretion.
First author: V. V. Bobylev
In recent years, radio interferometric observations have achieved high accuracy in determining the absolute values of trigonometric parallaxes and proper motions of maser radiation sources and radio stars. The error in determining the trigonometric parallaxes of these objects averages about 10 microarcseconds, which allows us to confidently study the geometric and kinematic properties of the distribution of stars located at great distances from the Sun, up to the center of the Galaxy.
First author: Ji-Yu Song
Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, and such GW data are commonly referred to as dark sirens.
First author: Camilla Pacifici
The study of galaxy evolution hinges on our ability to interpret multi-wavelength galaxy observations in terms of their physical properties. To do this, we rely on spectral energy distribution (SED) models which allow us to infer physical parameters from spectrophotometric data. In recent years, thanks to the wide and deep multi-waveband galaxy surveys, the volume of high quality data have significantly increased. Alongside the increased data, algorithms performing SED fitting have improved, including better modeling prescriptions, newer templates, and more extensive sampling in wavelength space.
First author: Tzu-Yin Hsu
Fast radio bursts (FRBs) are millisecond-duration transients with large dispersion measures. The origin of FRBs is still mysterious. One of the methods to comprehend FRB origin is to probe the physical environments of FRB host galaxies. Mapping molecular-gas kinematics in FRB host galaxies is critical because it results in star formation that is likely connected to the birth of FRB progenitors. However, most previous works of FRB host galaxies have focused on its stellar component.
First author: Daniel Maschmann
Emission lines with a double-peak (DP) shape, detected in the centre of galaxies, have been extensively used in the past to identify peculiar kinematics such as dual active galactic nuclei, outflows or mergers. From a large DP galaxy sample, a connection to minor merger galaxies with ongoing star formation was suggested. To gain a better understanding of different mechanisms creating a DP signature, we here explore synthetic SDSS spectroscopic observations computed from disc models and simulations.
First author: Janice C. Lee
The PHANGS collaboration has been building a reference dataset for the multi-scale, multi-phase study of star formation and the interstellar medium in nearby galaxies. With the successful launch and commissioning of JWST, we can now obtain high-resolution infrared imaging to probe the youngest stellar populations and dust emission on the scales of star clusters and molecular clouds ($\sim$5-50 pc). In Cycle 1, PHANGS is conducting an 8-band imaging survey from 2-21$\mu$m of 19 nearby spiral galaxies.
First author: Ulrich P. Steinwandel
We present the first results from a high resolution simulation with a focus on galactic wind driving for an isolated galaxy with a halo mass of $\sim 10^{11}$ M${\odot}$ (similar to the Large Magellanic Cloud) and a total gas mass of $\sim 6 \times 10^{8}$ M${\odot}$, resulting in $\sim 10^{8}$ gas cells at $\sim 4$ M${\odot}$ mass resolution. We adopt a resolved stellar feedback model with non-equilibrium cooling and heating, including photoelectric heating and photo-ionizing radiation, as well as supernovae (SNe), coupled to the second order meshless finite mass (MFM) method for hydrodynamics.
First author: Josh Borrow
Early galaxies were the radiation source for reionization, with the photoheating feedback from the reionization process expected to reduce the efficiency of star formation in low mass haloes. Hence, to fully understand reionization and galaxy formation, we must study their impact on each other. The THESAN project has so far aimed to study the impact of galaxy formation physics on reionization, but here we present the new THESAN simulations with a factor 50 higher resolution ($m_{\rm b} \approx 10^4$~M$\odot$) that aim to self-consistently study the back-reaction of reionization on galaxies.