galaxies

Searches for Extremely Metal Poor Galaxies using ALFALFA-selected Dwarf Galaxies

First author: John H. Miller Jr We present a study of nearby dwarf galaxies selected from the ALFALFA blind HI survey. A primary goal of the project was to utilize a non-standard selection method with the hope of detecting previously unrecognized extremely metal-poor (XMP) galaxies. The study was motivated by the recent discovery of two XMP galaxies $-$ Leo P and Leoncino $-$ which were both originally found via the ALFALFA survey.

The Dependence of Galaxy Properties on the Underlying 3D Matter Density Field at 2.0<z<2.5

First author: Rieko Momose We study the environmental effect of galaxy evolution as a function of the underlying 3D dark matter density for the first time at $z=2-2.5$, in which the underlying matter density is reconstructed from galaxy and Ly$\alpha$ forest spectroscopy through dynamical forward modeling techniques. Utilizing these maps, we investigate the dependence of the star formation activities and galaxy types (mergers, submillimeter galaxies, active galactic nuclei, and quiescent galaxies) on the matter overdensity $\Delta$ and stellar mass.

Galaxies on graph neural networks: towards robust synthetic galaxy catalogs with deep generative models

First author: Yesukhei Jagvaral The future astronomical imaging surveys are set to provide precise constraints on cosmological parameters, such as dark energy. However, production of synthetic data for these surveys, to test and validate analysis methods, suffers from a very high computational cost. In particular, generating mock galaxy catalogs at sufficiently large volume and high resolution will soon become computationally unreachable. In this paper, we address this problem with a Deep Generative Model to create robust mock galaxy catalogs that may be used to test and develop the analysis pipelines of future weak lensing surveys.

Modeling halo and central galaxy orientations on the SO(3) manifold with score-based generative models

First author: Yesukhei Jagvaral Upcoming cosmological weak lensing surveys are expected to constrain cosmological parameters with unprecedented precision. In preparation for these surveys, large simulations with realistic galaxy populations are required to test and validate analysis pipelines. However, these simulations are computationally very costly – and at the volumes and resolutions demanded by upcoming cosmological surveys, they are computationally infeasible. Here, we propose a Deep Generative Modeling approach to address the specific problem of emulating realistic 3D galaxy orientations in synthetic catalogs.

The Effect of Splashback on Weak Lensing Mass Estimates of Galaxy Clusters and Groups

First author: Yuanyuan Zhang The splashback radius of a dark matter halo, which corresponds to the first apocenter radius reached by infalling matter and substructures, has been detected around galaxy clusters using a multitude of observational methods, including weak lensing measurements. In this manuscript, we present how the splashback feature in the halo density profile affects galaxy cluster masses derived through weak lensing measurements if it is not accounted for.

The globular cluster system of the nearest Seyfert II galaxy Circinus

First author: C. Obasi Context. The globular cluster (GC) system of Circinus galaxy has not been probed previously partly because of the location of the galaxy at - 3.8$^\circ$ Galactic latitude which suffers severely from interstellar extinction, stellar crowding, and Galactic foreground contamination. However, the deep near-infrared (NIR) photometry by the VISTA Variables in the Via L'actea Extended Survey (VVVX) in combination with the precise astrometry of Gaia EDR3 allow us to map GCs in this region.

A non-repeating fast radio burst in a dwarf host galaxy

First author: Shivani Bhandari We present the discovery of as-of-yet non-repeating Fast Radio Burst (FRB) with the Australian Square Kilometer Array Pathfinder (ASKAP) as a part of the Commensal Real-time ASKAP Fast Transients (CRAFT) Survey. FRB 20210117A was detected at the center frequency of 1271.5 MHz with a dispersion measure (DM) of $728.95\pm 0.01$ pc cm$^{-3}$. The sub-arcsecond localization of the burst led to the identification of its host galaxy at a $z=0.

Cold Mode Gas Accretion on Two Galaxy Groups at z$\sim$2

First author: Andrey Vayner We present Keck Cosmic Web Imager (KCWI) integral field spectroscopy (IFS) observations of rest-frame UV emission lines $\rm Ly\alpha$, C IV $\lambda \lambda$ 1548 \AA, 1550\AA and He II 1640 \AA observed in the circumgalactic medium (CGM) of two $z=2$ radio-loud quasar host galaxies. We detect extended emission on 80-90 kpc scale in $\rm Ly\alpha$ in both systems with C IV, and He II emission also detected out to 30-50 kpc.

Effects of the Central Mass Concentration on Bar Formation in Disk Galaxies

First author: Dajeong Jang While bars are common in disk galaxies, their formation conditions are not well understood. We use $N$-body simulations to study bar formation and evolution in isolated galaxies consisting of a stellar disk, a classical bulge, and a dark halo. We consider 24 galaxy models that are similar to the Milky Way but differ in the mass and compactness of the classical bulge and halo concentration. We find that the bar formation requires $(Q_{T,\text{min}}/1.

Extreme nature of four blue-excess dust-obscured galaxies revealed by optical spectroscopy

First author: Akatoki Noboriguchi We report optical spectroscopic observations of four blue-excess dust-obscured galaxies (BluDOGs) identified by Subaru Hyper Suprime-Cam. BluDOGs are a sub-class of dust-obscured galaxies (DOGs, defined with the extremely red color $(i-[22]){\rm AB} \geq 7.0$; Toba et al. 2015), showing a significant flux excess in the optical $g$- and $r$-bands over the power-law fits to the fluxes at the longer wavelengths. Noboriguchi et al. (2019) has suggested that BluDOGs may correspond to the blowing-out phase involved in a gas-rich major merger scenario.