First author: Bo Peng
We report the discovery of two companion sources to a strongly lensed galaxy SPT0418-47 (“ring”) at redshift 4.225, targeted by the JWST Early Release Science program. We confirm that these sources are at a similar redshift as the ring based on H$\alpha$ detected in the NIRSpec spectrum, and $[C II]$ 158 $\mu$m line from ALMA. Using multiple spectral lines detected in JWST/NIRSpec, the rest-frame optical to infrared images from NIRCam and MIRI, and far-infrared (FIR) dust continuum detected by ALMA, we argue that the newly discovered sources are actually lensed images of the same companion galaxy, hereafter referred to as SPT0418-SE (“SE”), located within 5 kpc in the source plane of the ring.
First author: Isaac Noel
The low-redshift mass-metallicity relation (MZR) is well studied, but the high-redshift MZR remains difficult to observe. To study the early MZR further, we analyze the Cosmic Reionization on Computers (CROC) simulations with a focus on the MZR from redshifts 5 to 10. We find that, across all redshifts, CROC galaxies exhibit similar stellar-phase and gas-phase MZRs that flatten with higher stellar mass. We attribute this flattening to the inaccurate star formation and feedback modeling in CROC (star formation is overly suppressed in massive CROC galaxies).
First author: Debanjan Sarkar
The fluctuations in the dark matter-baryon relative velocity field are imprinted as acoustic oscillations in the 21-cm power spectrum during cosmic dawn (CD). These velocity acoustic oscillations (VAOs) keep the imprints of the comoving sound horizon scale. In a previous work by Mu~noz, it has been demonstrated that these VAOs can be treated as standard rulers to measure the cosmic expansion rate at high redshifts by considering a variety of Lyman-Werner feedback strengths and foreground contamination scenarios.
First author: Yunwei Deng
Supernovae and their remnants provide energetic feedback to the ambient interstellar medium (ISM), which is often distributed in multiple gas phases. Among them, warm molecular hydrogen (H$_2$) often dominates the cooling of the shocked molecular ISM, which has been observed with the H$_2$ emission lines at near-infrared wavelengths. Such studies, however, were either limited in narrow filter imaging or sparsely sampled mid-infrared spectroscopic observations with relatively poor angular resolutions.
First author: Adam F. Kowalski
White-light stellar flares are now reported by the thousands in long-baseline, high precision, broad-band photometry from missions like Kepler, K2, and TESS. These observations are crucial inputs for assessments of biosignatures in exoplanetary atmospheres and surface ultraviolet radiation dosages for habitable zone planets around low-mass stars. A limitation of these assessments, however, is the lack of near-ultraviolet spectral observations of stellar flares. To motivate further empirical investigation, we use a grid of radiative-hydrodynamic simulations with an updated treatment of the pressure broadening of hydrogen lines to predict the $\lambda \approx 1800-3300$ \AA
First author: Vladimir Zhdankin
We demonstrate using linear theory and particle-in-cell (PIC) simulations that a synchrotron-cooling collisionless plasma acquires pressure anisotropy and, if the plasma beta is sufficiently high, becomes unstable to the firehose instability, in a process that we dub the synchrotron firehose instability (SFHI). The SFHI channels free energy from the pressure anisotropy of the radiating, relativistic electrons (and/or positrons) into small-amplitude, kinetic-scale magnetic-field fluctuations, which pitch-angle scatter the particles and bring the plasma to a near-thermal state of marginal instability.
First author: Michael F. Bietenholz
We present broadband radio flux-density measurements supernova (SN) 1996cr, made with MeerKAT, ATCA and ALMA, and images made from very long baseline interferometry (VLBI) observations with the Australian Long Baseline Array. The spectral energy distribution of SN 1996cr in 2020, at age, $t \sim$8700 d, is a power-law, with flux density, $S\propto \nu^{-0.588 \pm 0.011}$ between 1 and 34 GHz, but may steepen at $>35$ GHz.
First author: M. Bertaina
The trigger logic of the Tracking Ultraviolet Setup (TUS) and Multiwavelength Imaging New Instrument for the Extreme Universe Space Observatory (Mini-EUSO) space-based projects of the Joint Experiment Missions - EUSO (JEM-EUSO) program is summarized. The performance results on the search for ultra-high energy cosmic rays are presented.
arxiv link
pdf link
First author: N. Bartel
We observed the scintillation pattern of nine bright pulsars at 324 MHz and three at 1.68 GHz and analyzed the wavenumber spectrum which is related to electron density variations of the plasma turbulence of the interstellar medium. For all pulsars the frequency section of the autocorrelation function of the dynamic spectra to at least 45% of the maximum corresponds to predictions of scattering theories with a range of power-law exponents of the wavenumber spectrum of $3.
First author: M. M. Slob
We present a sample of 373 peaked-spectrum (PS) sources with spectral peaks around 150MHz, selected using a subset of two LOFAR all-sky surveys, the LOFAR Two Meter Sky Survey and the LOFAR LBA Sky Survey. These surveys are the most sensitive low-frequency widefield surveys to date, allowing us to select low-luminosity PS sources. Our sample increases the number of known PS sources in our survey area by a factor 50.