First author: Raphaël Kou
Galaxies, diffuse gas and dark matter make up the cosmic web defining the large-scale structure of the universe. We constrain the joint distribution of these constituents by cross-correlating galaxy samples binned by stellar mass from the Sloan Digital Sky Survey CMASS catalogue with maps of lensing convergence and the thermal Sunyaev-Zeldovich (tSZ) effect from the Planck mission. Fitting a halo-based model to our measured angular power spectra (galaxy-galaxy, galaxy-lensing convergence, galaxy-tSZ) at a median redshift of $z=0.
First author: Susana J. Landau
A discrete space-time structure lying at about the Planck scale may become manifest in the form of very small violations of the conservation of the matter energy-momentum tensor. In order to include such kind of violations, forbidden within the General Relativity framework, the theory of unimodular gravity seems as the simplest option to describe the gravitational interaction. In the cosmological context, a direct consequence of such violation of energy conservation might be heuristically viewed a “diffusion process of matter (both dark and ordinary)” into an effective dark energy term in Einstein’s equations, which leads under natural assumptions to an adequate estimate for the value of the cosmological constant.
Helena García Escudero
In this paper we explore the existing tensions in the local cosmological expansion rate, $H_0$, and amplitude of the clustering of large-scale structure at $8\, h^{-1}\mathrm{Mpc}$, $σ_8$, as well as models that claim to alleviate these tensions. We consider seven models: evolving dark energy ($w$CDM), extra radiation ($N_\mathrm{eff}$), massive neutrinos, curvature, primordial magnetic fields (PMF), self-interacting neutrino models, and early dark energy (EDE). We test these models against three data sets that span the full range of measurable cosmological epochs, have significant precision, and are well-tested against systematic effects: the Planck 2018 cosmic microwave background data, the Sloan Digital Sky Survey baryon acoustic oscillation scale measurements, and the Pantheon catalog of Type Ia supernovae.
First author: Christopher C. Lovell
Passive galaxies are ubiquitous in the local universe, and various physical channels have been proposed that lead to this passivity. To date, robust passive galaxy candidates have been detected up to $z \leqslant 5$, but it is still unknown if they exist at higher redshifts, what their relative abundances are, and what causes them to stop forming stars. We present predictions from the First Light And Reionisation Epoch Simulations (FLARES), a series of zoom simulations of a range of overdensities using the EAGLE code.
First author: E. Thygesen
Ultraluminous X-ray Sources (ULXs) in globular clusters are low mass X-ray binaries that achieve high X-ray luminosities through a currently uncertain accretion mechanism. Using archival Chandra and Hubble Space Telescope observations, we perform a volume-limited search ($\lesssim$ 70 Mpc) of 21 of the most massive ($>10^{11.5} M_\odot$) early-type galaxies to identify ULXs hosted by globular cluster (GC) candidates. We find a total of 34 ULX candidates above the expected background within 5 times the effective radius of each galaxy, with 10 of these ($\sim29.
First author: Jacco Vink
Shocks of supernova remnants (SNRs) accelerate charged particles up to 100 TeV range via diffusive shock acceleration (DSA) mechanism. It is believed that shocks of SNRs are the main contributors to the pool of Galactic cosmic rays, although it is still under debate whether they can accelerate particles up to the “knee” energy (10^15.5 eV) or not. In this chapter, we start with introducing SNRs as likely sources of cosmic rays and the radiation mechanisms associated with cosmic rays (section 3).
Kotaro Hijikawa
The current gravitational wave (GW) detectors have successfully observed many binary compact objects, and the third generation ground-based GW detectors such as Einstein telescope and space-borne detectors such as LISA will start their GW observation in a decade. Ahead of the arrival of this new era, we perform a binary population synthesis calculation for very massive (<span class="MathJax_Preview" style="display: none;"></span><span class="MathJax" id="MathJax-Element-1-Frame" tabindex="0" style=""><nobr><span class="math" id="MathJax-Span-1" style="width: 1.
First author: Tomáš Šoltinský
Enhanced ionizing radiation in close proximity to redshift $z\gtrsim 6$ quasars creates short windows of intergalactic Ly$\alpha$ transmission blueward of the quasar Ly$\alpha$ emission lines. The majority of these Ly$\alpha$ near-zones are consistent with quasars that have optically/UV bright lifetimes of $t_{\rm Q}\sim 10^{5}-10^{7}\rm,yr$. However, lifetimes as short as $t_{\rm Q}\lesssim 10^{4}\rm,yr$ appear to be required by the smallest Ly$\alpha$ near-zones. These short lifetimes present an apparent challenge for the growth of $\sim 10^{9}\rm,M_{\odot}$ black holes at $z\gtrsim 6$.
First author: P. D. Aleo
We present the Young Supernova Experiment Data Release 1 (YSE DR1), comprised of processed multi-color Pan-STARRS1 (PS1) griz and Zwicky Transient Facility (ZTF) gr photometry of 1975 transients with host-galaxy associations, redshifts, spectroscopic/photometric classifications, and additional data products from 2019 November 24 to 2021 December 20. YSE DR1 spans discoveries and observations from young and fast-rising supernovae (SNe) to transients that persist for over a year, with a redshift distribution reaching z~0.
First author: Shoulin Wei
Galaxy morphology reflects structural properties which contribute to understand the formation and evolution of galaxies. Deep convolutional networks have proven to be very successful in learning hidden features that allow for unprecedented performance on galaxy morphological classification. Such networks mostly follow the supervised learning paradigm which requires sufficient labelled data for training. However, it is an expensive and complicated process of labeling for million galaxies, particularly for the forthcoming survey projects.