First author: Kasper E. Heintz
Galaxies throughout the last 12 Gyr of cosmic time follow a single, universal fundamental plane that relates their star-formation rates (SFRs), stellar masses ($M_\star$) and chemical abundances. Deviation from these fundamental scaling relations would imply a drastic change in the processes that regulate galaxy evolution. Observations have hinted at the possibility that this relation may be broken in the very early universe. However, until recently, chemical abundances of galaxies could be only measured reliably as far back as redshift $z = 3.
First author: Tianqing Zhang
Cosmological weak lensing measurements rely on a precise measurement of the shear two-point correlation function (2PCF) along with a deep understanding of systematics that affect it. In this work, we demonstrate a general framework for describing the impact of PSF systematics on the cosmic shear 2PCF, and mitigating its impact on cosmological analysis. Our framework can describe leakage and modeling error from all spin-2 quantities contributed by the PSF second and higher moments, rather than just the second moments.
First author: Lior Shamir
The discrepancy between the mass of galaxies and their rotational velocity is one of the most puzzling scientific phenomena. Despite over a century of research, this phenomenon is not fully understood. Common explanations include dark matter and MOND, among other theories. Here we report on another observation that shows tension between the physics of galaxy rotation and its rotational velocity. We compare the brightness of galaxies, and find that galaxies that spin in the same direction as the Milky Way have different brightness than galaxies that spin in the opposite direction.
First author: Laila Linke
Third-order weak lensing statistics are a promising tool for cosmological analyses since they extract cosmological information in the non-Gaussianity of the cosmic large-scale structure. However, such analyses require precise and accurate models for the covariance. In this second paper of a series on third-order weak lensing statistics, we derive and validate an analytic model for the covariance of the third-order aperture statistics $\langle M_\mathrm{ap}^3\rangle$. We derive the covariance model from a real-space estimator for $\langle M_\mathrm{ap}^3\rangle$.
First author: Varenya Upadhyaya
We search for a linearity in the ratio of dark matter to baryonic matter as a function of radius for galaxy clusters, motivated by a recent result by Lovas (arXiv:2206.11431), who has discovered such a linearity for a diverse suite of galaxies in the SPARC sample. For our analysis, we used a sample of 54 non-cool core clusters from the HIFLUGCS sample. We do not find any evidence for a linear trend in the aforementioned ratio as a function of radius for individual clusters.
First author: W. Zhang
We study the Fourier time-lags due to the Comptonization of disc-emitted photons in a spherical, uniform, and stationary X-ray corona, which located on the rotational axis of the black hole. We use Monk, a general relativistic Monte-Carlo radiative transfer code, to calculate Compton scattering of photons emitted by a thin disc with a Novikov-Thorne temperature profile. We find that the model time-lags due to Comptonization remain constant up to a characteristic frequency and then rapidly decrease to zero at higher frequencies.
First author: Caleb Lammers
Despite the importance of feedback from active galactic nuclei (AGN) in models of galaxy evolution, observational constraints on the influence of AGN feedback on star formation remain weak. To this end, we have compared the star formation trends of 279 low-redshift AGN galaxies with 558 non-active control galaxies using integral field unit spectroscopy from the SDSS-IV MaNGA survey. With a Gaussian process-based methodology, we reconstruct non-parametric star formation histories in spatially-resolved spaxels covering the face of each galaxy.
S. A. Turakulov
Astrophysical S-factors at zero energy for the direct <span class="search-hit mathjax">nuclear</span> capture <span class="search-hit mathjax">reactions</span> $^{3}{\rm He}(α, γ)^{7}{\rm Be}$, $^{3}{\rm H}(α, γ)^{7}{\rm Li}$ and $^{7}{\rm Be}(p, γ)^{8}{\rm B}$ are estimated within the framework of two-body potential cluster model on the basis of extranuclear capture approximation of D. Baye and E. Brainis. The values of S(0)-factors have been calculated using two different potential models for each process, which were adjusted to the binding energies and empirical values of the asymptotical normalization coefficients from the literature.
First author: S. Pourojaghi
Using mock data for the Hubble diagrams of type Ia supernovae (SNIa) and quasars (QSOs) generated based on the standard model of cosmology, and using the least-squares method based on the Markov-Chain-Monte-Carlo (MCMC) algorithm, we first put constraints on the cosmographic parameters in the context of the various model-independent cosmographic methods reconstructed from the Taylor $4^{th}$ and $5^{th}$ order expansions and the Pade (2,2) and (3,2) polynomials of the Hubble parameter, respectively.
First author: Sho Fujibayashi
We explore a possible scenario of the explosion as a result of core collapses of rotating massive stars that leave a black hole by performing a radiation-viscous-hydrodynamics simulation in numerical relativity. We take moderately and rapidly rotating compact pre-collapse stellar models derived in stellar evolution calculations as the initial conditions. We find that the viscous heating in the disk formed around the central black hole powers an outflow.