First author: H. -Thomas Janka
Neutron stars (NSs) and black holes (BHs) are born when the final collapse of the stellar core terminates the lives of stars more massive than about 9 Msun. This can trigger the powerful ejection of a large fraction of the star’s material in a core-collapse supernova (CCSN), whose extreme luminosity is energized by the decay of radioactive isotopes such as 56Ni and 56Co. When evolving in close binary systems, the compact relics of such infernal catastrophes spiral towards each other on orbits gradually decaying by gravitational-wave emission.
First author: Xiao-Dan Fu
Narrow-Line Seyfert 1 (NLS1) Galaxies are an important type of active galactic nucleus (AGN), generally expected to be accreting at high Eddington rate. The properties of their outflows and importance of AGN feedback remain intriguing. We report on the discovery of fast outflowing warm absorbers (WAs) in the NLS1 PG 1001+054, with velocities in the range of 7000 to 9000 kilometers per second. They are identified with blueshifted Lyman alpha, N v and Si iv lines in the high resolution ultraviolet (UV) spectra taken with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST).
First author: Daya Nidhi Chhatkuli
It has long been speculated that Blue Compact Dwarf galaxies (BCDs) are formed through the interaction between low-mass gas-rich galaxies, but a few candidates of such systems have been studied in detail. We study a sample of compact star-forming dwarf galaxies that are selected from a merging dwarf galaxy catalog. We present a detailed study of their spectroscopic and structural properties. We find that these BCDs looking galaxies host extended stellar shells and thus are confirmed to be a dwarf-dwarf merger.
First author: D. O. Cook
We study the young star cluster populations in 23 dwarf and irregular galaxies observed by the HST Legacy ExtraGalactic Ultraviolet Survey (LEGUS), and examine relationships between the ensemble properties of the cluster populations and those of their host galaxies: star formation rate (SFR) density ($\Sigma_{\rm SFR}$). A strength of this analysis is the availability of SFRs measured from temporally resolved star formation histories which provide the means to match cluster and host-galaxy properties on several timescales (1-10, 1-100, and 10-100~Myr).
First author: Hai-Yang Wang
Hydrodynamical interaction in circumbinary discs (CBDs) plays a crucial role in various astrophysical systems, ranging from young stellar binaries to supermassive black hole binaries in galactic centers. Most previous simulations of binary-disc systems have adopted locally isothermal equation of state. In this study, we use the grid-based code $\texttt{Athena++}$ to conduct a suite of two-dimensional viscous hydrodynamical simulations of circumbinary accretion on a cartesian grid, resolving the central cavity of the binary.
First author: Shoshannah Byrne-Mamahit
We present an analysis of the instantaneous supermassive black hole (SMBH) accretion rates in a collection of 1563 post-merger galaxies drawn from the IllustrisTNG simulation. Our sample consists of galaxies that have experienced a merger in the last simulation snapshot (within ~160 Myrs of coalescence) in the redshift range 0<z<1, with merger stellar mass ratios >1:10 and post-merger stellar masses > $10^{10} M_{\odot}$. We find that, on average, the accretion rates of the post-mergers are ~1.
First author: Yoshihisa Asada
Using CANUCS imaging we found an apparent major merger of two $z\sim5$ ultra-low-mass galaxies ($M_\star\sim10^{7}M_\odot$ each) that are doubly imaged and magnified $\sim$12-15$\times$ by the lensing cluster MACS 0417. Both galaxies are experiencing young ($\sim$100 Myr), synchronised bursts of star formation with $\log({\rm sSFR/Gyr^{-1}} )\sim$1.3-1.4, yet SFRs of just $\sim 0.2 M_\odot\ {\rm yr}^{-1}$. They have sub-solar ($Z\sim0.2Z_\odot$) gas-phase metallicities and are connected by an even more metal-poor star-forming bridge.
First author: Íñigo Zubeldia
Galaxy clusters detected through the thermal Sunyaev-Zeldovich (tSZ) effect are a powerful cosmological probe from which constraints on cosmological parameters such as $\Omega_{\mathrm{m}}$ and $\sigma_8$ can be derived. The measured cluster tSZ signal can be, however, contaminated by Cosmic Infrared Background (CIB) emission, as the CIB is spatially correlated with the cluster tSZ field. We quantify the extent of this contamination by applying the iterative multi-frequency matched filter (iMMF) cluster-finding method to mock Planck-like data from the Websky simulation.
First author: Mark P. Hertzberg
The idea of ultralight scalar (axion) dark matter is theoretically appealing and may resolve some small-scale problems of cold dark matter; so it deserves careful attention. In this work we carefully analyze tunneling of the scalar field in dwarf satellites due to the tidal gravitational force from the host halo. The tidal force is far from spherically symmetric; causing tunneling along the axis from the halo center to the dwarf, while confining in the orthogonal plane.
First author: Srikanth T. Nagesh
We conduct hydrodynamical MOND simulations of isolated disc galaxies over the stellar mass range $M_{\star}/M_\odot = 10^7 - 10^{11}$ using the adaptive mesh refinement code \textsc{phantom of ramses} (\textsc{por}), an adaptation of the \textsc{ramses} code with a Milgromian gravity solver. The scale lengths and gas fractions are based on observed galaxies, and the simulations are run for 5~Gyr. The main aim is to see whether existing sub-grid physics prescriptions for star formation and stellar feedback reproduce the observed main sequence and reasonably match the Kennicutt-Schmidt relation that captures how the local and global star formation rates relate to other properties.