Jan D. Burger
Impulsive supernova feedback and non-standard dark matter models, such as self-interacting dark matter (SIDM), are the two main contenders for the role of the dominant core formation mechanism at the dwarf galaxy scale. Here we show that the impulsive supernova cycles that follow episodes of bursty star formation leave distinct features in the distribution function of stars: groups of stars with similar ages and metallicities develop overdense shells in phase space.
James A. A. Trussler
We utilise theoretical models of Population III stellar+nebular spectra to investigate the prospects of observing and accurately identifying Population III galaxies with JWST using both deep imaging and spectroscopy. We investigate a series of different colour cuts, finding that a combination of NIRCam and MIRI photometry through the F444W-F560W, F560W-F770W colours offers the most robust identifier of potential $z=8$ Pop III candidates. We calculate that NIRCam will have to reach $\sim$ 28.
A. Tamii, L. Pellegri
Photo-nuclear reactions of light nuclei below a mass of $A=60$ are studied experimentally and theoretically by the PANDORA (Photo-Absorption of Nuclei and Decay Observation for Reactions in Astrophysics) project. Two experimental methods, virtual-photon excitation by proton scattering and real-photo absorption by a high-brilliance gamma-ray beam produced by laser Compton scattering, will be applied to measure the photo-absorption cross sections and the decay branching ratio of each decay channel as a function of the photon energy.
Eduardo Vitral
We seek to differentiate dynamical and morphological attributes between globular clusters (GCs) that were formed inside their own dark matter (DM) mini-halo, and those who were not. We employ high resolution full N-body simulations on GPU of GCs with and without a DM mini-halo, orbiting a Fornax-like dwarf galaxy. For GCs with DM, we observe that this dark extra mass triggers a tidal radius growth that allows the mini-halo to act as a protective shield against tidal stripping, being itself stripped beforehand the stars.
Mingyu Li, Zheng Cai
We present the mass-metallicity relation (MZR) at $z=2-3$ in the stellar mass range of $M_\star\approx 10^{6.5}-10^{9.5}M_\odot$ using 55 dwarf galaxies in the Abell 2744 and SMACS J0723-3732 galaxy cluster fields. These dwarf galaxies are identified and confirmed by deep JWST/NIRISS imaging and slitless grism spectroscopic observations. Taking advantage of the gravitational lensing effect, we extend the previous MZR relation at $z=2-3$ to a much lower mass regime by more than 2.
Georg Herzog
We examine the gas content of field dwarf galaxies in a high-resolution cosmological simulation. In agreement with previous work, we find that galaxies inhabiting dark matter haloes with mass below a critical value, $M_{200} \lesssim M_{\rm crit} \approx 5\times 10^{9} \ M_{\odot}$, are quiescent at the present day. The gas content of these galaxies is thus insensitive to feedback from evolving stars. Almost half of these quiescent systems today have gas masses much smaller than that expected for their mass.
Marko Mićić
Dual AGN are important for understanding galaxy-merger-triggered fueling of black holes and hierarchical growth of structures. The least explored type of dual AGN are those associated with mergers of two dwarf galaxies. According to observations and cosmological simulations, dwarf galaxies are the most abundant type of galaxies in the early Universe and the galaxy merger rate is dominated by dwarfs. However, these mergers are generally too distant to be directly observed, and low-redshift dwarf-dwarf merger-related dual AGN are notoriously hard to find.
Xingzhuo Chen
We use physics informed neural networks (PINNs) to solve the radiative transfer equation and calculate a synthetic spectrum for a Type Ia supernova (SN~Ia) SN 2011fe. The calculation is based on local thermodynamic equilibrium (LTE) and 9 elements are included. Physical processes included are approximate radiative equilibrium, bound-bound transitions, and the Doppler effect. A PINN based gamma-ray scattering approximation is used for radioactive decay energy deposition. The PINN synthetic spectrum is compared to an observed spectrum, a synthetic spectrum calculated by the Monte-Carlo radiative transfer program TARDIS, and the formal solution of the radiative transfer equation.