10(month)

The connection between the escape of ionizing radiation and galaxy properties at z~3 in the Keck Lyman Continuum Spectroscopic Survey

First author: Anthony J. Pahl The connection between the escape fraction of ionizing radiation ($f_{esc}$) and the properties of galaxies, such as stellar mass (M*), age, star-formation rate (SFR), and dust content, are key inputs for reionization models, but many of these relationships remain untested at high redshift. We present an analysis of a sample of 96 z~3 galaxies from the Keck Lyman Continuum Spectroscopic Survey (KLCS). These galaxies have both sensitive Keck/LRIS spectroscopic measurements of the Lyman continuum (LyC) region, and multi-band photometry that places constraints on stellar population parameters.

A New Flaring Black Widow Candidate and Demographics of Black Widow Millisecond Pulsars in the Galactic Field

First author: Samuel J. Swihart We present the discovery of a new optical/X-ray source likely associated with the Fermi $\gamma$-ray source 4FGL J1408.6-2917. Its high-amplitude periodic optical variability, large spectroscopic radial velocity semi-amplitude, evidence for optical emission lines and flaring, and X-ray properties together imply the source is probably a new black widow millisecond pulsar binary. We compile the properties of the 41 confirmed and suspected field black widows, finding a median secondary mass of $0.

Artificial Intelligence Assisted Inversion (AIAI): Quantifying the Spectral Features of $^{56}$Ni of Type Ia Supernovae

First author: Xingzhuo Chen Following our previous study of Artificial Intelligence Assisted Inversion (AIAI) of supernova analyses \citep{Xingzhuo2020AIAI}, we trained a set of deep neural networks based on the one-dimensional radiative transfer code TARDIS \citep{tardis} to simulate the optical spectra of Type Ia supernovae (SNe~Ia) between 10 and 40 days after the explosion. The neural network can be applied to derive the elemental abundances from the observed spectra. In this paper, we focus on the mass of $^{56}$Ni and its associated spectral features for a sample of 153 well-observed SNe~Ia.

Colliding Ghosts: Constraining Inflation with the Parity-Odd Galaxy Four-Point Function

First author: Giovanni Cabass Could new physics break the mirror symmetry of the Universe? Utilizing recent measurements of the parity-odd four-point correlation function of BOSS galaxies, we probe the physics of inflation by placing constraints on the amplitude of a number of parity-violating models. Within canonical models of (single-field, slow-roll) inflation, no parity-asymmetry can occur; however, it has recently been shown that breaking of the standard assumptions can lead to parity violation within the Effective Field Theory of Inflation (EFTI).

Constrain the Merger History of Primordial-Black-Hole Binaries from GWTC-3

First author: Lang Liu Primordial black holes (PBHs) can be not only cold dark matter candidates but also progenitors of binary black holes observed by LIGO-Virgo-KAGRA (LVK) Collaboration. The PBH mass can be shifted to the heavy distribution if multi-merger processes occur. In this work, we constrain the merger history of PBH binaries using the gravitational wave events from the third Gravitational-Wave Transient Catalog (GWTC-3). Considering four commonly used PBH mass functions, namely the log-normal, power-law, broken power-law, and critical collapse forms, we find that the multi-merger processes make a subdominant contribution to the total merger rate.

Deep Learning Detection and Classification of Gravitational Waves from Neutron Star-Black Hole Mergers

First author: Richard Qiu The Laser Interferometer Gravitational-Wave Observatory (LIGO) and Virgo Interferometer Collaborations have now detected all three classes of compact binary mergers: binary black hole (BBH), binary neutron star (BNS), and neutron star-black hole (NSBH). For coalescences involving neutron stars, the simultaneous observation of gravitational and electromagnetic radiation produced by an event, has broader potential to enhance our understanding of these events, and also to probe the equation of state (EOS) of dense matter.

Endothermic self-interacting dark matter in Milky Way-like dark matter haloes

First author: Stephanie O’Neil Self-interacting dark matter (SIDM) offers the potential to mitigate some of the discrepancies between simulated cold dark matter (CDM) and observed galactic properties. We introduce a physically motivated SIDM model to understand the effects of self interactions on the properties of Milky Way and dwarf galaxy sized haloes. This model consists of dark matter with a nearly degenerate excited state, which allows for both elastic and inelastic scattering.

Fermi-LAT detection of G118.4+37.0: a supernova remnant in the Galactic halo seen around the Calvera pulsar

First author: Miguel Araya The discovery of a non-thermal radio ring of low surface brightness about one degree in diameter has been recently reported around the location in the sky of the Calvera pulsar, at a high Galactic latitude. The radio properties point to it likely being a new supernova remnant (SNR), G118.4+37.0. We report an analysis of almost 14 years of observations of this region by the gamma-ray Large Area Telescope onboard the Fermi satellite.

From starburst to quenching: merger-driven evolution of the star formation regimes in a shell galaxy

First author: Jonathan Petersson Shell galaxies make a class of tidally distorted galaxies, characterised by wide concentric arc(s), extending out to large galactocentric distances with sharp outer edges. Recent observations of young massive star clusters in the prominent outer shell of NGC 474 suggest that such systems host extreme conditions of star formation. In this paper, we present a hydrodynamic simulation of a galaxy merger and its transformation into a shell galaxy.

Hot Jupiter engulfment by a red giant in 3D hydrodynamics

First author: Mike Y. M. Lau Transit and radial-velocity surveys over the past two decades have uncovered a significant population of short-period exoplanets. Among them are hot Jupiters, which are gas giant planets with orbital periods of a few days and found in 0.1-1% of Sun-like stars. Hot Jupiters are expected to be engulfed during their host star’s radial expansion on the red giant branch. Planetary engulfment has been studied extensively as it may account for observed rapidly rotating and chemically enriched giant stars.