Cover Your Basis: Comprehensive Data-Driven Characterization of the Binary Black Hole Population
First author: Bruce Edelman
We introduce the first complete non-parametric model for the astrophysical distribution of the binary black hole (BBH) population. Constructed from basis splines, we use these models to conduct the most comprehensive data-driven investigation of the BBH population to date, simultaneously fitting non-parametric models for the BBH mass ratio, spin magnitude and misalignment, and redshift distributions. With GWTC-3, we report the same features previously recovered with similarly flexible models of the mass distribution, most notably the peaks in merger rates at primary masses of ${\sim}10,M_\odot$ and ${\sim}35,M_\odot$. Our model reports a suppressed merger rate at low primary masses and a mass ratio distribution consistent with a power law. We infer a distribution for primary spin misalignments that peaks away from alignment, supporting conclusions of recent work. We find broad agreement with the previous inferences of the spin magnitude distribution: the majority of BBH spins are small ($a<0.5$), the distribution peaks at $a\sim0.2$, and there is mild support for a non-spinning subpopulation, which may be resolved with larger catalogs. With a modulated power law describing the BBH merger rate’s evolution in redshift, we see hints of the rate evolution either flattening or decreasing at $z\sim0.2-0.5$, but the full distribution remains entirely consistent with a monotonically increasing power law. We conclude with a discussion of the astrophysical context of our new findings and how non-parametric methods in gravitational-wave population inference are uniquely poised to complement to the parametric approach as we enter the data-rich era of gravitational-wave astronomy.